Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Clin Transl Radiat Oncol ; 47: 100781, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38726346

RESUMEN

Introduction: In the multidisciplinary management of oligometastatic, persistent, or recurrent (MPR) ovarian cancer, radiotherapy (RT) is becoming a more and more worthwhile treatment to potentially improve the chronicity of the disease. Particle beam RT has proved to be effective in several gynecological malignancies, but so far no data are available for ovarian cancer. Material and Methods: This is a real-world, retrospective, bi-institutional, single-arm study aimed to assess the effectiveness and the safety of carbon ion RT (CIRT) in this setting. The co-first endpoints are 1-year and 2-year actuarial local control (LC) rates and the objective response rate (ORR) defined on a "per lesion" basis. The secondary endpoint was toxicity. Actuarial outcomes were evaluated using the Kaplan-Meier method while potential predictors were explored using the Log-rank test. Bi-variable logistic regression was employed in the analysis of factors predicting the complete response on a per-lesion basis. Results: 26 patients accounting for a total of 36 lesions underwent CIRT with a total median dose of 52.8 Gy[RBE] (range: 39-64 Gy[RBE]). Five patients received CIRT for re-irradiation. No concomitant systemic therapies were administered during CIRT. Within 12 months after the treatment, 17 lesions (47 %) achieved complete response while 18 (50 %) obtained a partial response with an ORR of 97 %. The achievement of a complete response is related to the dose per fraction (>4.2 Gy[RBE], p = 0.04) and total dose (>52,8 Gy[RBE], p = 0.05). The 1-year LC was 92 % and the 2-year LC was 83 %, according to the achievement of a CR (p = 0.007) and GTV ≤ 14 cm3 (p = 0.024). No grade > 3 toxicities were recorded both in naïve and re-irradiated patients. PARP-i and anti-VEGF seemed not to exacerbate the risk of severe toxicities. Conclusions: CIRT was effective and safe in MPR ovarian cancers, even in the case of re-irradiation. Largest cohort studies and longer follow-up are needed to confirm these data.

2.
RMD Open ; 10(2)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38663885

RESUMEN

OBJECTIVES: To investigate pregnancy outcomes in women with autoimmune rheumatic diseases (ARD) in the Italian prospective cohort study P-RHEUM.it. METHODS: Pregnant women with different ARD were enrolled for up to 20 gestational weeks in 29 Rheumatology Centres for 5 years (2018-2023). Maternal and infant information were collected in a web-based database. RESULTS: We analysed 866 pregnancies in 851 patients (systemic lupus erythematosus was the most represented disease, 19.6%). Maternal disease flares were observed in 135 (15.6%) pregnancies. 53 (6.1%) pregnancies were induced by assisted reproduction techniques, 61 (7%) ended in miscarriage and 11 (1.3%) underwent elective termination. Obstetrical complications occurred in 261 (30.1%) pregnancies, including 2.3% pre-eclampsia. Two cases of congenital heart block were observed out of 157 pregnancies (1.3%) with anti-Ro/SSA. Regarding treatments, 244 (28.2%) pregnancies were treated with glucocorticoids, 388 (44.8%) with hydroxychloroquine, 85 (9.8%) with conventional synthetic disease-modifying anti-rheumatic drugs and 122 (14.1%) with biological disease-modifying anti-rheumatic drugs. Live births were 794 (91.7%), mostly at term (84.9%); four perinatal deaths (0.5%) occurred. Among 790 newborns, 31 (3.9%) were small-for-gestational-age and 169 (21.4%) had perinatal complications. Exclusive maternal breast feeding was received by 404 (46.7%) neonates. The Edinburgh Postnatal Depression Scale was compiled by 414 women (52.4%); 89 (21.5%) scored positive for emotional distress. CONCLUSIONS: Multiple factors including preconception counselling and treat-to-target with pregnancy-compatible medications may have contributed to mitigate disease-related risk factors, yielding limited disease flares, good pregnancy outcomes and frequency of complications which were similar to the Italian general obstetric population. Disease-specific issues need to be further addressed to plan preventative measures.


Asunto(s)
Enfermedades Autoinmunes , Complicaciones del Embarazo , Resultado del Embarazo , Enfermedades Reumáticas , Humanos , Embarazo , Femenino , Adulto , Estudios Prospectivos , Enfermedades Autoinmunes/epidemiología , Enfermedades Autoinmunes/tratamiento farmacológico , Resultado del Embarazo/epidemiología , Enfermedades Reumáticas/tratamiento farmacológico , Enfermedades Reumáticas/epidemiología , Enfermedades Reumáticas/complicaciones , Recién Nacido , Complicaciones del Embarazo/epidemiología , Complicaciones del Embarazo/tratamiento farmacológico , Antirreumáticos/uso terapéutico , Antirreumáticos/efectos adversos , Italia/epidemiología , Glucocorticoides/uso terapéutico , Hidroxicloroquina/uso terapéutico , Hidroxicloroquina/efectos adversos
4.
J Appl Clin Med Phys ; 24(6): e13986, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37031365

RESUMEN

PURPOSE: To define an optimal set of b-values for accurate derivation of diffusion MRI parameters in the brain with segmented Intravoxel Incoherent Motion (IVIM) model. METHODS: Simulations of diffusion signals were performed to define an optimal set of b-values targeting different perfusion regimes, by relying on an optimization procedure which minimizes the total relative error on estimated IVIM parameters computed with a segmented fitting procedure. Then, the optimal b-values set was acquired in vivo on healthy subjects and skull base chordoma patients to compare the optimized protocol with a clinical one. RESULTS: The total relative error on simulations decreased of about 40% when adopting the optimal set of 13 b-values (0 10 20 40 50 60 200 300 400 1200 1300 1400 1500 s/mm2 ), showing significant differences and increased precision on D and f estimates with respect to simulations with a non-optimized b-values set. Similarly, in vivo acquisitions demonstrated a dependency of IVIM parameters on the b-values array, with differences between the optimal set of b-values and a clinical non-optimized acquisition. IVIM parameters were compatible to literature values, with D (0.679/0.701 [0.022/0.008] ·10-3 mm2 /s), f (5.49/5.80 [0.70/1.14] %), and D* (8.25/7.67 [0.92/0.83] ·10-3 mm2 /s) median [interquartile range] estimates for white matter/gray matter in volunteers and D (0.709/0.715/1.06 [0.035/0.023/0.271] ·10-3 mm2 /s), f (7.08/7.84/21.54 [1.20/1.06/6.05] %), and D* (10.85/11.84/2.32 [1.38/2.32/4.94] ·10-3 mm2 /s) for white matter/gray matter/Gross Tumor Volume in patients with skull-base chordoma tumor. CONCLUSIONS: The definition of an optimal b-values set can improve the estimation of quantitative IVIM parameters. This allows setting up an optimized approach that can be adopted for IVIM studies in the brain.


Asunto(s)
Cordoma , Humanos , Encéfalo/diagnóstico por imagen , Movimiento (Física) , Imagen de Difusión por Resonancia Magnética/métodos
6.
Med Phys ; 50(5): 2900-2913, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36602230

RESUMEN

BACKGROUND: Quantitative imaging such as Diffusion-Weighted MRI (DW-MRI) can be exploited to non-invasively derive patient-specific tumor microstructure information for tumor characterization and local recurrence risk prediction in radiotherapy. PURPOSE: To characterize tumor microstructure according to proliferative capacity and predict local recurrence through microstructural markers derived from pre-treatment conventional DW-MRI, in skull-base chordoma (SBC) patients treated with proton (PT) and carbon ion (CIRT) radiotherapy. METHODS: Forty-eight patients affected by SBC, who underwent conventional DW-MRI before treatment and were enrolled for CIRT (n = 25) or PT (n = 23), were retrospectively selected. Clinically verified local recurrence information (LR) and histological information (Ki-67, proliferation index) were collected. Apparent diffusion coefficient (ADC) maps were calculated from pre-treatment DW-MRI and, from these, a set of microstructural parameters (cellular radius R, volume fraction vf, diffusion D) were derived by applying a fine-tuning procedure to a framework employing Monte Carlo simulations on synthetic cell substrates. In addition, apparent cellularity (ρapp ) was estimated from vf and R for an easier clinical interpretation. Histogram-based metrics (mean, median, variance, entropy) from estimated parameters were considered to investigate differences (Mann-Whitney U-test, α = 0.05) in estimated tumor microstructure in SBCs characterized by low or high cell proliferation (Ki-67). Recurrence-free survival analyses were also performed to assess the ability of the microstructural parameters to stratify patients according to the risk of local recurrence (Kaplan-Meier curves, log-rank test α = 0.05). RESULTS: Refined microstructural markers revealed optimal capabilities in discriminating patients according to cell proliferation, achieving best results with mean values (p-values were 0.0383, 0.0284, 0.0284, 0.0468, and 0.0088 for ADC, R, vf, D, and ρapp, respectively). Recurrence-free survival analyses showed significant differences between populations at high and low risk of local recurrence as stratified by entropy values of estimated microstructural parameters (p = 0.0110). CONCLUSION: Patient-specific microstructural information was non-invasively derived providing potentially useful tools for SBC treatment personalization and optimization in particle therapy.


Asunto(s)
Cordoma , Neoplasias de Cabeza y Cuello , Neoplasias de la Base del Cráneo , Humanos , Imagen de Difusión por Resonancia Magnética/métodos , Cordoma/diagnóstico por imagen , Cordoma/radioterapia , Cordoma/patología , Estudios Retrospectivos , Antígeno Ki-67 , Cráneo
7.
Radiother Oncol ; 177: 143-151, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36328091

RESUMEN

BACKGROUND AND PURPOSE: In recent years, there is an emerging interest in the prognostic role of chemistry blood biomarkers in oncological patients but their role in adenoid cystic carcinomas (ACCs) is still unknown. This study aims to assess the prognostic significance of baseline neutrophil-to-lymphocyte ratio (NLR) and blood chemistry in a series of head and neck ACC patients treated with carbon ion radiotherapy (CIRT). MATERIAL AND METHODS: We retrospectively retrieved the data of 49 consecutive head and neck ACC patients treated with CIRT. Univariable and multivariable Cox proportional hazard regression (Cox-ph) analyses were performed to look for a potential association of NLR, and other blood biomarker values, with disease-free survival (DFS), Local Control (LC), Metastasis Free Survival (MFS) and overall survival (OS). RESULTS: No significant association between NLR > 2,5 and DFS, LC, MFS and OS was found with univariable analysis although a trend was reported for DFS (Hazard ratio [HR]: 2,10, 95 % CI: 0,85 - 5,08, p-value = 0,11). Patients with hemoglobin (hb) ≤ 14 g/dL showed significantly better DFS, MFS and OS. Multivariable regression Cox-ph analysis for DFS, adjusted for margin status, clinical target volume and Absolute Number of Monocytes, reported the following statistically significant HRs, for both NLR > 2,5 and hb > 14 g/dL respectively: 4,850 (95 % CI = 1,408 - 16,701, p = 0,012) and 3,032 (95 % CI = 1,095 - 8,393, p = 0,033). Moreover, hb > 14 with HR = 3,69 (95 % CI: 1,23 - 11,07, p-value = 0,02), was a negative independent prognostic predictor for MFS. CONCLUSIONS: Pre-treatment NLR and hb values seem to be independent prognostic predictor for clinical outcomes in head and neck ACC patients. If their role will be validated in a larger prospective cohort, they might be worthwhile for a pre-treatment risk stratification in patients treated with CIRT.


Asunto(s)
Carcinoma Adenoide Quístico , Radioterapia de Iones Pesados , Humanos , Neutrófilos , Recuento de Linfocitos , Carcinoma Adenoide Quístico/radioterapia , Estudios Retrospectivos , Estudios Prospectivos , Linfocitos , Pronóstico
8.
Future Oncol ; 18(22): 2403-2412, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35712914

RESUMEN

Aim: To evaluate the association between pretreatment diffusion-weighted MRI (DW-MRI) and 12-month radiological response in locally recurrent rectal cancer treated with carbon ion radiotherapy. Methods: Histogram analysis was performed on pretreatment DW-MRI for patients re-irradiated with carbon ion radiotherapy for local recurrence of rectal cancer. Results: A total of 17 patients were enrolled in the study. Pretreatment DW-MRI b-value of 1000 s/mm2 (b1000) and apparent diffusion coefficient (ADC) lesion median values for 1-year nonresponders (six patients) and responders (11 patients) demonstrated a median (interquartile of median values) of 62.5 (23.9) and 34.0 (13.0) and 953.0 (277.0) and 942.5 (339.0) µm2/s, respectively. All b1000 histogram features (h-features) and ADC h-kurtosis showed statistically significant differences, whereas only b1000 h-median, b1000 h-interquartile range and ADC h-kurtosis demonstrated remarkable diagnostic accuracy. Conclusion: DW-MRI showed promising results in predicting carbon ion radiotherapy outcome in local recurrence of rectal cancer, particularly with regard to b1000 h-median, b1000 h-interquartile range and ADC h-kurtosis.


Carbon ion radiotherapy is a form of advanced radiotherapy that is especially suitable for radioresistant and/or difficult-to-irradiate tumors. In case of recurrence of rectal cancer after pelvic photon beam radiotherapy, carbon ion radiotherapy may be an option. In this study, the authors looked at the potential role of specific MRI sequences performed before treatment to predict response to carbon ion radiotherapy. If confirmed in a larger prospective cohort, the findings of this study may drive clinical decisions toward a more tumor- and patient-tailored therapeutic approach.


Asunto(s)
Radioterapia de Iones Pesados , Neoplasias del Recto , Imagen de Difusión por Resonancia Magnética/métodos , Humanos , Imagen por Resonancia Magnética , Recurrencia Local de Neoplasia/diagnóstico por imagen , Recurrencia Local de Neoplasia/radioterapia , Neoplasias del Recto/diagnóstico por imagen , Neoplasias del Recto/patología , Neoplasias del Recto/radioterapia
9.
Med Phys ; 49(4): 2386-2395, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35124811

RESUMEN

PURPOSE: In this study, we investigate the use of magnetic resonance imaging (MRI) for the clinical evaluation of gating treatment robustness in carbon-ion radiotherapy (CIRT) of pancreatic cancer. Indeed, MRI allows radiation-free repeated scans and fast dynamic sequences for time-resolved (TR) imaging (cine-MRI), providing information on inter- and intra-fraction cycle-to-cycle variations of respiratory motion. MRI can therefore support treatment planning and verification, overcoming the limitations of the current clinical standard, that is, four-dimensional computed tomography (4DCT), which describes an "average" breathing cycle neglecting breathing motion variability. METHODS: We integrated a technique to generate a virtual CT (vCT) from 3D MRI with a method for 3D reconstruction from 2D cine-MRI, to produce TR vCTs for dose recalculations. For eight patients, the method allowed evaluating inter-fraction variations at end-exhale and intra-fraction cycle-to-cycle variability within the gating window in terms of tumor displacement and dose to the target and organs at risk. RESULTS: The median inter-fraction tumor motion was in the range 3.33-12.16 mm, but the target coverage was robust (-0.4% median D95% variation). Concerning cycle-to-cycle variations, the gating technique was effective in limiting tumor displacement (1.35 mm median gating motion) and corresponding dose variations (-3.9% median D95% variation). The larger exposure of organs at risk (duodenum and stomach) was caused by inter-fraction motion, whereas intra-fraction cycle-to-cycle dose variations were limited. CONCLUSIONS: This study proposed a method for the generation of TR vCTs from MRI, which enabled an off-line evaluation of gating treatment robustness and suggested its feasibility to support treatment planning of pancreatic tumors in CIRT.


Asunto(s)
Radioterapia de Iones Pesados , Neoplasias Pancreáticas , Carbono , Tomografía Computarizada Cuatridimensional/métodos , Humanos , Imagen por Resonancia Magnética , Movimiento , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Respiración , Neoplasias Pancreáticas
10.
Sci Total Environ ; 815: 152708, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34990679

RESUMEN

Micron size fiber fragments (MFFs), both natural and synthetic, are ubiquitous in our life, especially in textile clothes, being necessary in modern society. In the Earth's aquatic ecosystem, microplastic fibers account for ~91% of microplastic pollution, thus deserving notable attention as one of the most alarming ecological problems. Accurate automatic identification of MFFs discharges in specific upstream locations is highly demanded. Computational microscopy based on Digital Holography (DH) and machine learning has been demonstrated to identify microplastics in respect to microalgae. However, DH is a non-specific optical tool, meaning it cannot distinguish different types of plastic materials. On the other hand, materials-specific assessments are pivotal to establish the environmental impact of different textile products and production processes. Spectroscopic assays can be employed to identify microplastics for their intrinsic specificity, although they are generally low-throughput and require large concentrations to enable effective measurements. Conversely, MFFs are usually finely dispersed within a water sample. Here we rely on a polarization-resolved holographic flow cytometer in a Lab-on-Chip (LoC) platform for analysing MFFs. We demonstrate that two important objectives can be achieved, i.e. adding material specificity through polarization analysis while operating in a microfluidic stream modality. Through a machine learning numerical pipeline, natural fibers (i.e. cotton and wool) can be clearly separated from synthetic microfilaments, namely PA6, PA6.6, PET, PP. Moreover, the proposed system can accurately distinguish between different polymers under investigation, thus fulfilling the specificity goal. We extract and select different features from amplitude, phase and birefringence maps retrieved from the digital holograms. These are shown to typify MFFs without the need for sample pre-treatment or large concentrations. The simplicity of the DH method for identifying MFFs in LoC-based flow cytometers could promote the use of polarization resolved field-portable analysis systems suitable for studying pollution caused by washing processes of synthetic textiles.


Asunto(s)
Holografía , Contaminantes Químicos del Agua , Ecosistema , Monitoreo del Ambiente , Microplásticos , Plásticos , Aguas Residuales , Contaminantes Químicos del Agua/análisis
11.
Z Med Phys ; 32(1): 98-108, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33069586

RESUMEN

PURPOSE: To generate virtual 4DCT from 4DMRI with field of view (FOV) extended to the entire involved patient anatomy, in order to evaluate its use in carbon ion radiation therapy (CIRT) of the abdominal site in a clinical scenario. MATERIALS AND METHODS: The virtual 4DCT was generated by deforming a reference CT in order to (1) match the anatomy depicted in the 4DMRI within its FOV, by calculating deformation fields with deformable image registration to describe inter-fractional and breathing motion, and (2) obtain physically plausible deformation outside of the 4DMRI FOV, by propagating and modulating the previously obtained deformation fields. The implemented method was validated on a digital anthropomorphic phantom, for which a ground truth (GT) 4DCT was available. A CIRT treatment plan was optimized at the end-exhale reference CT and the RBE-weighted dose distribution was recalculated on both the virtual and GT 4DCTs. The method estimation error was quantified by comparing the virtual and GT 4DCTs and the corresponding recomputed doses. The method was then evaluated on 8 patients with pancreas or liver tumors treated with CIRT using respiratory gating at end-exhale. The clinical treatment plans adopted at the National Center for Oncological Hadrontherapy (CNAO, Pavia, Italy) were considered and the dose distribution was recomputed on all respiratory phases of the planning and virtual 4DCTs. By comparing the two datasets and the corresponding dose distributions, the geometrical and dosimetric impact of organ motion was assessed. RESULTS: For the phantom, the error outside of the 4DMRI FOV was up to 4.5mm, but it remained sub-millimetric in correspondence to the target within the 4DMRI FOV. Although the impact of motion on the target D95% resulted in variations ranging from 22% to 90% between the planned dose and the doses recomputed on the GT 4DCT phases, the corresponding estimation error was ≤2.2%. In the patient cases, the variation of the baseline tumor position between the planning and the virtual end-exhale CTs presented a median (interquartile range) value of 6.0 (4.9) mm. For baseline variations larger than 5mm, the tumor D95% variation between the plan and the dose recomputed on the end-exhale virtual CT resulted larger than 10%. Median variations higher than 10% in the target D95% and gastro-intestinal OARs D2% were quantified at the end-inhale, whereas close to the end-exhale phase, limited variations of relevant dose metrics were found for both tumor and OARs. CONCLUSIONS: The negligible impact of the geometrical inaccuracy in the estimated anatomy outside of the 4DMRI FOV on the overall dosimetric accuracy suggests the feasibility of virtual 4DCT with extended FOV in CIRT of the abdominal site. In the analyzed patient group, inter-fractional variations such as baseline variation and breathing variability were quantified, demonstrating the method capability to support treatment planning in gated CIRT of the abdominal site.


Asunto(s)
Neoplasias Abdominales , Radioterapia de Iones Pesados , Neoplasias Pulmonares , Neoplasias Abdominales/diagnóstico por imagen , Neoplasias Abdominales/radioterapia , Tomografía Computarizada Cuatridimensional/métodos , Humanos , Neoplasias Pulmonares/radioterapia , Movimiento , Fantasmas de Imagen , Planificación de la Radioterapia Asistida por Computador/métodos
12.
Microorganisms ; 9(7)2021 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-34361875

RESUMEN

One of the most studied metabolic routes is the biosynthesis of histidine, especially in enterobacteria where a single compact operon composed of eight adjacent genes encodes the complete set of biosynthetic enzymes. It is still not clear how his genes were organized in the genome of the last universal common ancestor community. The aim of this work was to analyze the structure, organization, phylogenetic distribution, and degree of horizontal gene transfer (HGT) of his genes in the Bacteroidota-Rhodothermota-Balneolota-Chlorobiota superphylum, a group of phylogenetically close bacteria with different surviving strategies. The analysis of the large variety of his gene structures and organizations revealed different scenarios with genes organized in more or less compact-heterogeneous or homogeneous-operons, in suboperons, or in regulons. The organization of his genes in the extant members of the superphylum suggests that in the common ancestor of this group, genes were scattered throughout the chromosome and that different forces have driven the assembly of his genes in compact operons. Gene fusion events and/or paralog formation, HGT of single genes or entire operons between strains of the same or different taxonomic groups, and other molecular rearrangements shaped the his gene structure in this superphylum.

13.
Water Res ; 201: 117368, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34186288

RESUMEN

Microplastic Particles (MPs) are ubiquitous pollutants widely found in aquatic ecosystems. Although MPs are mostly retained in wastewater treatment plants (WWTPs), a high number of MPs reaches the open waters potentially contributing to the spread of pathogenic bacteria and antibiotic resistance genes in the environment. Nowadays, a limited number of studies have focused on the role of MPs as carriers of potentially pathogenic and antibiotic resistant bacteria in WWTPs. Thus, an investigation on the community composition (by 16S rRNA gene amplicon sequencing) and the abundance of antibiotic and metal resistance genes (by qPCR) of the biofilm on MPs (the plastisphere) and of planktonic bacteria in treated (pre- and post-disinfection) wastewaters was performed. MPs resulted to be very similar in terms of type, color, size, and chemical composition, before and after the disinfection. The bacterial community on MPs differed from the planktonic community in terms of richness, composition, and structure of the community network. Potentially pathogenic bacteria generally showed higher abundances in treated wastewater than in the biofilm on MPs. Furthermore, among the tested resistance genes, only sul2 (a common resistance gene against sulfonamides) resulted to be more abundant in the plastisphere than in the planktonic bacterial community. Our results suggest that the wastewater plastisphere could promote the spread of pathogenic bacteria and resistance genes in aquatic environment although with a relatively lower contribution than the wastewater planktonic bacterial community.


Asunto(s)
Microplásticos , Aguas Residuales , Antibacterianos , Bacterias/genética , Ecosistema , Genes Bacterianos , Plásticos , ARN Ribosómico 16S/genética
14.
ACS Omega ; 6(13): 8884-8893, 2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33842759

RESUMEN

Interest in insects as waste biomass bioconverters and their use as valuable resources for fat, proteins, and chitin has increased considerably in the last few years. In this study, proteins were extracted from defatted black soldier fly (BSF) (Hermetia illucens) exuviae by green hydrolysis using superheated water at 150 °C for 20 h, and the remaining chitin was deacetylated into chitosan and used as a finishing agent for polyester fabrics. A total amount of 7% fat, 40% proteins, and 20% chitin was obtained from BSF exuviae. Different hydrolysis times ranging from 1 to 20 h were tried until the complete purification of chitin. The purity of chitin and the obtained chitosan after deacetylation was assessed by Fourier transform infrared spectroscopy and thermal analysis. A preliminary study was successfully carried out to use the obtained chitosan as a finishing agent for polyester pretreated fabrics using citric acid as a grafting agent. The presence of chitosan on the fabric was verified by scanning electron microscopy and by dyeing of the pretreated polyester fabric using a reactive dye with sulfonated groups that are able to be absorbed by electrostatic attraction because of the created cationic nature of the fiber surface treated by chitosan.

15.
Phys Med ; 84: 72-79, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33872972

RESUMEN

PURPOSE: To evaluate changes in diffusion and perfusion-related properties of white matter (WM) induced by proton therapy, which is capable of a greater dose sparing to organs at risk with respect to conventional X-ray radiotherapy, and to eventually expose early manifestations of delayed neuro-toxicities. METHODS: Apparent diffusion coefficient (ADC) and IVIM parameters (D, D* and f) were estimated from diffusion-weighted MRI (DWI) in 46 patients affected by meningioma and treated with proton therapy. The impact on changes in diffusion and perfusion-related WM properties of dose and time, as well as the influence of demographic and pre-treatment clinical information, were investigated through linear mixed-effects models. RESULTS: Decreasing trends in ADC and D were found for WM regions hit by medium-high (30-40 Gy(RBE)) and high (>40 Gy(RBE)) doses, which are compatible with diffusion restriction due to radiation-induced cellular injury. Significant influence of dose and time on median ADC changes were observed. Also, D* showed a significant dependency on dose, whereas f consistently showed no dependency on dose and time. Age, gender and surgery extent were also found to affect changes in ADC. CONCLUSIONS: These results overall agree with those from studies conducted on cohorts of mixed proton and X-ray radiotherapy patients. Future work should focus on relating our findings with clinical information of co-morbidities and thus exploiting such or more advanced imaging data to build normal tissue complication probability models to better integrate clinical and dose information.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Terapia de Protones , Sustancia Blanca , Imagen de Difusión por Resonancia Magnética , Humanos , Meningioma/diagnóstico por imagen , Meningioma/radioterapia , Terapia de Protones/efectos adversos , Sustancia Blanca/diagnóstico por imagen
16.
J Med Imaging Radiat Oncol ; 65(3): 337-344, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33773081

RESUMEN

INTRODUCTION: Respiratory motion models establish a correspondence between respiratory-correlated (RC) 4-dimensional (4D) imaging and respiratory surrogates, to estimate time-resolved (TR) 3D breathing motion. To evaluate the performance of motion models on real patient data, a validation framework based on magnetic resonance imaging (MRI) is proposed, entailing the use of RC 4DMRI to build the model, and on both (i) TR 2D cine-MRI and (ii) additional 4DMRI data for testing intra-/inter-fraction breathing motion variability. METHODS: Repeated MRI data were acquired in 7 patients with abdominal lesions. The considered model relied on deformable image registration (DIR) for building the model and compensating for inter-fraction baseline variations. Both 2D and 3D validation were performed, by comparing model estimations with the ground truth 2D cine-MRI and 4DMRI respiratory phases, respectively. RESULTS: The median DIR error was comparable to the voxel size (1.33 × 1.33 × 5 mm3 ), with higher values in the presence of large inter-fraction motion (median value: 2.97 mm). In the 2D validation, the median estimation error on anatomical landmarks' position resulted below 4 mm in every scenario, whereas in the 3D validation it was 1.33 mm and 4.21 mm when testing intra- and inter-fraction motion, respectively. The range of motion described in the cine-MRI was comparable to the motion of the building 4DMRI, being always above the estimation error. Overall, the model performance was dependent on DIR error, presenting reduced accuracy when inter-fraction baseline variations occurred. CONCLUSIONS: Results suggest the potential of the proposed framework in evaluating global motion models for organ motion management in MRI-guided radiotherapy.


Asunto(s)
Imagen por Resonancia Magnética , Radioterapia Guiada por Imagen , Humanos , Movimiento (Física) , Movimiento , Fantasmas de Imagen , Respiración
17.
Neuroradiology ; 63(7): 1053-1060, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33392736

RESUMEN

PURPOSE: To assess early microstructural changes of meningiomas treated with proton therapy through quantitative analysis of intravoxel incoherent motion (IVIM) and diffusion-weighted imaging (DWI) parameters. METHODS: Seventeen subjects with meningiomas that were eligible for proton therapy treatment were retrospectively enrolled. Each subject underwent a magnetic resonance imaging (MRI) including DWI sequences and IVIM assessments at baseline, immediately before the 1st (t0), 10th (t10), 20th (t20), and 30th (t30) treatment fraction and at follow-up. Manual tumor contours were drawn on T2-weighted images by two expert neuroradiologists and then rigidly registered to DWI images. Median values of the apparent diffusion coefficient (ADC), true diffusion (D), pseudo-diffusion (D*), and perfusion fraction (f) were extracted at all timepoints. Statistical analysis was performed using the pairwise Wilcoxon test. RESULTS: Statistically significant differences from baseline to follow-up were found for ADC, D, and D* values, with a progressive increase in ADC and D in conjunction with a progressive decrease in D*. MRI during treatment showed statistically significant differences in D values between t0 and t20 (p = 0.03) and t0 and t30 (p = 0.02), and for ADC values between t0 and t20 (p = 0.04), t10 and t20 (p = 0.02), and t10 and t30 (p = 0.035). Subjects that showed a volume reduction greater than 15% of the baseline tumor size at follow-up showed early D changes, whereas ADC changes were not statistically significant. CONCLUSION: IVIM appears to be a useful tool for detecting early microstructural changes within meningiomas treated with proton therapy and may potentially be able to predict tumor response.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Terapia de Protones , Imagen de Difusión por Resonancia Magnética , Humanos , Neoplasias Meníngeas/diagnóstico por imagen , Neoplasias Meníngeas/radioterapia , Meningioma/diagnóstico por imagen , Meningioma/radioterapia , Movimiento (Física) , Estudios Retrospectivos
18.
Cancers (Basel) ; 13(2)2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33477723

RESUMEN

Skull-base chordoma (SBC) can be treated with carbon ion radiotherapy (CIRT) to improve local control (LC). The study aimed to explore the role of multi-parametric radiomic, dosiomic and clinical features as prognostic factors for LC in SBC patients undergoing CIRT. Before CIRT, 57 patients underwent MR and CT imaging, from which tumour contours and dose maps were obtained. MRI and CT-based radiomic, and dosiomic features were selected and fed to two survival models, singularly or by combining them with clinical factors. Adverse LC was given by in-field recurrence or tumour progression. The dataset was split in development and test sets and the models' performance evaluated using the concordance index (C-index). Patients were then assigned a low- or high-risk score. Survival curves were estimated, and risk groups compared through log-rank tests (after Bonferroni correction α = 0.0083). The best performing models were built on features describing tumour shape and dosiomic heterogeneity (median/interquartile range validation C-index: 0.80/024 and 0.79/0.26), followed by combined (0.73/0.30 and 0.75/0.27) and CT-based models (0.77/0.24 and 0.64/0.28). Dosiomic and combined models could consistently stratify patients in two significantly different groups. Dosiomic and multi-parametric radiomic features showed to be promising prognostic factors for LC in SBC treated with CIRT.

19.
Chemosphere ; 270: 129410, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33418213

RESUMEN

Synthetic clothing represents a primary source of environmental pollution because of shedding of microfilaments during laundry washing or in textile processes. Although many approaches can be used for the evaluation of microplastic, there are no precise guideline to follow for the analysis labs. Here, an accurate method for the preparation of microfilaments standard suspensions to facilitate lab tests and the monitoring of microplastic in different matrices was developed. Different standard suspensions were prepared by using five different synthetic threads consisting of a different number of filaments cut with a predetermined length of 0.2 mm suspended in three different volumes of water. The suspensions were filtered and the microfilaments were counted. The number of microfilaments for each polymer solution were statistically elaborated with a logit model and the results showed that the probability of detecting them is higher than 95% when the concentration of microfilaments/L is lower than 200. Moreover, a relationship between the theoretical microfilaments contained in the samples and the detection probability of the single microfilament, for each suspension volume was highlighted.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Citoesqueleto de Actina/química , Monitoreo del Ambiente , Plásticos , Estándares de Referencia , Contaminantes Químicos del Agua/análisis
20.
Phys Med ; 75: 33-39, 2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-32485596

RESUMEN

PURPOSE: In image-guided particle radiotherapy of abdominal lesions, respiratory motion hinders treatment accuracy. In this study, 2D cineMRI data were used to quantify the tumor (GTV) motion and to evaluate the clinical approach based on deriving an internal target volume (ITV) from a planning 4DCT for gating treatments. METHODS: Seven patients with abdominal lesions were treated with carbon-ion therapy at the National Centre of Oncological Hadron-therapy (Italy). The MR scan was performed on the same day of the 4DCT acquisition. For four patients, an additional MR was acquired approximately after 1 week. The cineMRI combined with deformable image registration algorithm was used to quantify tumor motion. Afterwards, two ITVs were defined considering (1) all phases (ITVFB) and (2) only phases within the gating window (ITVG), and then compared with the clinical (4DCT-derived) ITVs (ITVCG and ITVCFB). RESULTS: Tumor residual motion estimated by cineMRI data in the two MRI sessions resulted not significantly different from 4DCT, although cineMRI accounted for cycle-to-cycle variations. The ITV normalized for the GTV median values were higher for ITVFB with respect to ITVG, ITVCFB and ITVCG. The Hausdorff distances with respect to the GTV were up to 10.55 mm, 3.13 mm, 5.56 mm and 2.51 mm, for ITVFB, ITVG, ITVCFB and ITVCG, respectively. According to both metrics, ITVCG and ITVG were not found significantly different. CONCLUSIONS: CineMRI acquisitions allowed to quantify organ motion without delivering additional dose to the patient and to verify treatment margins in gated carbon-ion therapy of abdominal lesions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...